МОСКОВСКИЙ СТАНКОСТРОИТЕЛЬНЫЙ ЗАВОД «КРАСНЫЙ ПРОЛЕТАРИЙ"

ТОКАРНО-ВИНТОРЕЗНЫЕ СТАНКИ

модели

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ
16K20.000.000.РЭ

MOCKBA-1975

СОДЕРЖАНИЕ

1. Ввөдение 3
2. Распаковка и транспортирование 5
3. Снятие антикоррозийных покрытий 5
4. Установка станка 6
5. Подготовка станка к пуску 7
6. Смазка станка 8
6.1. Общие указания 8
6.2. Карта смазки 8
6.3. Перечень рекомендуемых смазочных материалов 8
6.4. Описание системы смазки 9
7. Электрооборудование 11
7.1. Общие сведения 11
7.2. Подключение станка 11
7.3. Указания по технике безопасности 11
7.4. Блокировочные устройства 11
7.5. Инструкция по первоначальному пуску станка 13
7.6. Органы управления 13
7.7. Описание электросхемы 13
7.8. Рекомендации по обслуживанию электрооборудования 16
7.9. Спецификация электрооборудования 17
8. Пневмооборудование 17
9. Органы упрәвления 18
10. Пуск станка и некоторые условия эксплуатации 21
11. Указания по установне и использовәнию патронов и люнетов 21
12. Механика станка 22
12.1. Механизм главного движения 22
12.2. Установка подач 23
12.3. Инструкция по нарезанию резьб 23
13. Краткое описание основных узлов и нх регулирование 27
13.1. Шпиндельная бабка 27
13.2. Задняя бабка 27
13.3. Коробка подач 27
13.4. Фартук 37
13.5. Суппорт 37
13.6. Моторная установка 37
13.7. Механизм управления фрикционной муфтой главного привода 37
13.8. Коробка передач (сменные шестерни) 49
13.9. Станина, рейки, ходовой винт, ходовой вал и привод быстрых перемещений суппорта 49
13.10. Держатель центрового инструмента 49
13.11. Резцовая оправка для обработкк деталей над выемкой в станине 49
14. Кинематическая схема 52
15. Схема расположения подшипников 52
16. Характерные возможные неисправности 56
17. Ремонт 57
18. Указания о проведении контропя точности 60
19. Паспорт 63
19.1. Общие сведения 63
19.2. Основные технические данные и характеристики 64
19.3. Сведения о ремонте 68
19.4. Сведения об изменениях в станке 68
19.5. Комплект поставки 69
ПРИЛОЖЕНИЕ:16К20.000.000.РЭ1 свидетельство о приемке16К20.000.000.РЭ2 свидетельство о нонсервации16К20.000.000.РЭ3 свидетельство об упаковке16К20.000.000.РЭ4 гарантии (только для станков, поставляемых на внут-ренний рынок)
В руководстве освещаются вопросы по установке, пуску, использованию, уходу и обслуживанию токарно-винторезных станков моделей 16 K 20 , $16 \mathrm{~K} 20 \Pi, 16 \mathrm{~K} 20 \Gamma, 16 \mathrm{~K} 25$ и содержатся сведения а конструкции, способствующие рациональной работе. Последние три модели выполнены на базе основной модели 16 K 20 с максимальной унификацией, имеют одинаковые кинематичеокие схемы и унифи. цираванную конструкцию.

> 16 K 20 - базовый станок нормальной точно16 K 20 - - сти;
> 16 K 20 - станок повышенной точности;
> 16 K 25 - кой в станинел;
> - облегченный точности с выемности с увеличенным дормальной точработки.

1. ВВЕДЕНИЕ

Различия в технических характеристиках станут ясны из приведенной в руководстве таблицы основных данных станков (раздел 19.2).

Просим строго придерживаться предписаний и рекомендаций, изложенных в руководстве.

Соблюдение правил ухода и обслуживания станков позволит длительное время сохранять первоначальную точность и предотвратить преждевременный износ и поломку деталей.

Особо тужно учесть, что станок 16 K 20 П является моделью повышенной точности и во избежание потери точности не следует использовать его для черновой обработки.

В связи с тем, что станки могут применяться в различных отраслях промышленности на всевозможных операциях для обработки разных материалов, обслуживание станков следует осуществлять с учетом специфики их эксплуатации.

Технологическне возможности станков весьма широки, поэтому естественно, что в руководстве не представляется возможным показатъ все виды и приемы работы.

3а получением квалифицированных консультаций по вопросам эксплуатации, обслуживания и ремонта станков обращайтесь по адресу:

СССР, Москва, 117071,
М. Калужская, 15 , завод « Красный пролетарий» им. А. И. Ефремова.
Телеграфный адрес: Москва ДИП. Телетайп: 111222.

Следует помнить, что в процессе технического совершенствования станков в их конструкдию могут быть внесены некоторые изменения.

Поэтому при заказе запасных частей необходимо указать следующие данные:
a) модель и заводской номер станка (номер модели указан на таблице, помещенной на шпиндельной бабке, заводской номер выбит в верхней части основания с правой стороны в виде семизначнопо числа);
б) наибольшую длину обрабатываемого изделия L;
в) пределы числа оборотов шпинделя;
г) номер рисунка, наименование узла и порядковые номера деталей по чертежам общих видов аснавных узлов, помещенным в разделе 13 руководства (например, рис. 27. Суппорт, детали 11, 37 и 39).

Комплектующие изделия (подшипники, электроаппаратуру и т. п.) целесообразно приобретать по типу или номеру, нанесенному непосредственно на них с указанием основных данных. При отсутствии такой возможности тип или номер можно устӓновить по схемам и таблицам руководства.

На чертежах общих видов выносками обозначены только детали, изготовление или восстановление которых вне заводских условий затруднительно и может повлиять на эксплуатационные показатели станков.

Простейшие детали (крепежные винты и гайки, штифты, неответственные проставки и втулки, щитки и т. п.) в целях упрощения чертежей и в связи с простотой их изготовления или приобретения не обозначены.

На чертежах общих видов указано также обозначение резиновых уплотнительных манжет.

Примечание. О возможных незначнтельных ияменениях, ие влияющих на техническую характеристыку станка, завод не сообщает.

Общнй вид станка

2. РАСПАКОВКА И ТРАНСПОРТИРОВАНИЕ

При распаковке надо следить за тем, чтобы не повредить станок распаковочным инструментом. Поэтому рекомендуется вначале снимать верхний щит ящика, а затем - боковые.

Экран опраждения суппорта закрепляют от по* ворота вокруг стойки винтами или зажнмают его между задней бабкой и верхней частью суппорта.

Рнс. 1. Схема транспортировки.

В кармане, прибитом на торце ящика, помещен упаковочный лист, по которому проверяется қомплектность поставки. Упаковочные листы на принадлежности и инструмент находятся в отдельных ящиках, помещенных в общей упаковке станка.

Перед транспортированием станка в распакованном виде необходимо убедиться в том, что перемещающиеся узлы надежно закреплены на станине. Задняя бабка при помощи рукоятки 18 (рис. 9) закрепляется в правом крайнем положении, а каретка болтом 13 (рис. 9) - в средней части станины между стропами каната.

Транопортирование станка осуществляется согласно схеме транспортирования (рис. 1) при помощи четырехстропного каната, концы 1 и 2 которого надеваются на две стальные штанги 3 диаметром 60 мм ($23 / 8^{\prime \prime}$), вставляемые в специально предусмотренные отверстия основания станка.

В местах прикасания каната к станку нужно установить деревянные прокладки 4. При транспортировании к месту установки и при опускании на фундамент необходимо следить за тем, чтобы станок не подвергался сильным толчкам и сотрясениям.

3. СНЯТИЕ АНТИКОРРОЗИЙНЫХ ПОКРЫТИЙ

Перед установкой станок неабходимо тщательно очистить от антикоррозийных покрытий. Наружные поверхности станка покрыты антикоррозийной ингибированной смазкой НГ-203А, а внутренние -НГ-2035. Для их удаления нужно воспользоваться деревянной лопаточкой и салфетками, смоченными бензином или уайт-спиритом.

Для снятия антикоррозийной смазки с ходового винта и ходового вала необходимо защитные щитки снять, а затем установить на прежнее место и закрепить винтами.

Во избежание коррозии очищенные поверхности покрыть тонким слоем масла «Индустриальнөе-30» ГОСТ $1707-51$ или масла, заменяющего его (см. раздел 6.3).

4. УСТАНОВКА СТАНКА

Продолжительность сохранения точности станка Станок следует установить на фундаменте, сощасво многом зависит от правильипсти его установки.

Модель	16420,		16 K 20 T		1612017		161425			
L	710	1000	1403	2000	710	1290	710	1000	1400	2000
A	2140	2430	2830	3430	2142	2430	2140	2430	2830	3430
B	1190						1240			
C	1770	2050	2450	3060	1770	2050	1770	2060	2460	3060
D	2505	2795	3195	3795	2505	2795	2505	2795	3195	3795

Рис. 2. Установочный чертеж

Глубина заложения фундамента принимается в зависимости от грунта, но должна быть не менеє 150 мм ($5^{15} /{ }^{16}{ }^{\prime \prime}$).

Если станок предназначен для финишных опера ций, тлубина фундамента должна быть не менее 500 мм.

Станок крепится к фундаменту четырьмя фундаментными болтами с резьбой М20.

При установке станка следует предуомотреть наличие свободных зон для открывания дверцы шкач фа электрооборудования и поворота подмоторной плиты электродвигателя главного привода, а также для возможности демонтажа щитков ходового вала и ходовото винта для чистки и смазки последних.

При наибольшей длине обрабатываемого изделия L :

710 мм ($27^{15} / 16^{\prime \prime}$) длина цитков составляет 1545 мм ($60^{3 /} / 4^{\prime \prime}$);

1000 мж ($39^{3} / 8^{\prime \prime}$) длина щитков составляет 1835 м M ($72^{3} / 16^{\prime \prime}$);

1400 мм ($55^{1} / 8^{\prime \prime}$) длина щитков состаЕляет 2235 мм ($96^{1} / 8^{\prime \prime}$);

2000 мм (783/4") длина щитков составляет 2835 мм (1163/8 ${ }^{\prime \prime}$)

Как вариант, может быть предложена установкӑ станков под углом 10° к стене цеха или линии размещения оборудования.

Выверка установки станка в горизонтальной плоккости осуществляется при помощи уровня, устанавливаемого в средней части суппорта параллельно и перпендикулярно оси центров (фундаментные болты должны быть не затянуты). В любом положении каретки отклонение уровня не должно превышать $0,04 \mathrm{~mm} / 1000$ мм для станков $16 \mathrm{~K} 20,16 \mathrm{~K} 20 \Gamma$, 16 K 25 и 0,02 мм/ 1000 мм для станка $16 \mathrm{~K} 20 П$.

В Н ИМАНИЕ! На станках 16 K 25 установить (снятую для транспортировки) рукоятку поперечного перемещения суппорта согласно рис. 27.

Указанная рукоятка упакована в инструментальном ящике.

5. ПОДГОТОВКА СТАНКА К ПУСКУ

Ознакомившись с указаниями, изложенными в разделах, следующих непосредственно за этим, мож но в соответствии с рекомендуемой ниже последова*тельностью приступить к подготовке станка к пуску,

Выполнить все операции, связанные с подготовкой станка к пуску, изложенные в разделе 6 «Смазка станка», а также в стружкосборник основания, размещенный под станиной, залить около 30Ω (6,6 англ. галлона) охлаждающей жидкости.

В соответствии с указаниями раздела 7 «Электрооборудование» подсоединить станок к цепи заземления и, проверив соответствие напряжения сети и электрооборудования станка, подключить к электросети.

Подключить станок к мапистрали сжатого воздуха согласно указаниям раздела 8 «Пневмооборудование».

Проверить лепкость перемещения задней бабки по станине. Подача воздуха на направляющие производится при повороте на себя рукоятки 18 (рис. 9). Усилие перемещения задней бабки не должно превышать 5 кгс (49 н).

После ознакомления с назначением органов управления (раздел 9) проверить от руки работу всех механизмов станка. Рукоятки 8 и 16 (рис. 9) должны быть установлены в средних нейтральиых положениях.

Следует знать, что из-за наличия блокировочных устройств стаиок не может быть включен:

при открытой дверце электрошкафа управления;
при открытом кожухе сменных шестерен;

при откинутом кожухе ограждения патрона.
Описание блокировочных устройств помещено в разделе 7 «Электрооборудование».

Нажатием черной кнопки «Пуск» на кнопочной станции 12 (рис. 9) включить электродвигатель главного привода. Направление вращения показано стрелкой на рис. 32.

В Н ИМА Н И Е! Обязательно нужио проверить по маслоуказателю 1 (рис. 3) действие снстемы централизованной смазки шпиндельиой бабки и коробки подач. При невращающемся маслоуказателе работа на станке недопустима.

Проверку работы смазочного насоса фартука осуществляют по вытеканию масла из вертикальното отверстия на правой верхней плоской направляющей каретки, которое открывается при установке поперечных салазок суппорта на расстоянии 180-190 мм от переднего торца каретки. Включение насоса пронзводится одновременным нажатием кнопок 9 и 21 (рис. 9). Для смазки направляющих станины и суппорта поперечные салазки устанавливают у лереднего торца каретки (приблизительно в 10 мм) и в течение 1 мин при нажатых кнопках 9 и 21 (рис. 9) производят подачу масла.

При помощи выключателя 28 (рис. 9) проверить работу электродвигателя насоса подачи охлаждающей жидкости. Количество тодаваемой жидкости регулируется поворотом сопла 26 (рис. 9).

После выполнения указанных операций станок готов к птуску.

6. СМАЗKA СТАНКА

6.1. Общие указания

Правильная и регулярная смазка станка имеет большое значение для нормальной его эксплуатации и долговечности.

Поэтому необходимо строго придерживаться ниже приведенных рекомендаций.

При подготовке станка к пуску в соответствии с картой смазки (п. 6.2) и схемой смазки (рис. 3) : заполнить резервуары смазкой и смазать указанные в карте механизмы.

Смазку производить смазочными материалами. указанными в карте смазки, или их заменителями, : приведенными в перечне рекомендуемых смазочных материалов (п. 6.3).

6.2. Карта смазки

Таблица 1

\%	Смазывяемле механизмы	Cпосе х смазки	Марка смазочного материала	Периодичность смазки нли" замена масла	Номер смазываемои точки по ехеме смаяки (рис. 3)	Колामес \quad во зали. васмого масла в л. (аня галлон)
1	Шпиндельная баGка и коробка подач	Автоматическая централизованная	Нндустоиальное 20 ГОСТ 1707-51	ракз в 6 меся- иев	$\begin{aligned} & \text { Заливка - } 6 ; \\ & \text { слив }-4 \end{aligned}$	17 (3,74)
2	Фартук	Abtomatuческая	$\left\lvert\, \begin{gathered} \text { Иидvernиальное } 30 \\ \text { ГОСТ } 1707-51 \end{gathered}\right.$	Замена масла при плановых осмотpax и пемонтах	$\begin{gathered} \text { Заливка - } 6 ; \\ \text { слив }-4 \end{gathered}$	1,5 (0,33)
3	Каретка и поперечные салазки суппорта	Полуавтоматическая от насоса фартука	$\left\lvert\, \begin{gathered} \text { Ини vстриальное } 30 \\ \text { ГOCT } 1707-51 \end{gathered}\right.$	2 раза в смену	2	Из реэервуара фартука
4	Задние опоры ходового винта и ходового вала	Ручная	Иниустпналние 30 ГОСТ 1707-51	Еженепельно	6	003 ¢006
5	Резцовые салазки суппорта и опоры винта привода по- перечных салазок	Ручиат		pas a cmeny	3	0,02 (0,004;
6	Задняя бабка	Pyumar	$\left\{\begin{array}{c} \text { Thryentumano } \\ \text { rOCT } 1707-51 \end{array}\right.$		3	O, OR
7	Сменныг шестар:и:	nymas	тесктй УСc2 ГОСТ 1356-64	-naczinvonu	-	фунта)
8	Резцедержатель	Ручная	Инпустпиальное 30 TOCT : $707-5$?	раз в смену		$0,0:(0,002)$

6.3. Перечень рекомендуемых смазочных материалов

Таблиша 2

Стрария $\boldsymbol{8}$ основвай	(Марка скаяобного матерналя		
CCCP	Индустрнальное-20 ГОСТ 1707-51	Индустриальное-30 (машин-	Солидол синтетический Сс
	ИС-20 ГОСТ 8675-62 1. Вязкость при $50^{\circ} \mathrm{C} \quad 17-23$ сст	$\begin{aligned} & \text { ИС-30 ГОСТ 8675-62 } \\ & 27-33 \text { сст. } \end{aligned}$	1. Эффективиая вязкость при $0^{\circ} \mathrm{C}$ впз, не более - 2000
	2. Тем-ра вспышки не ниже $-165^{\circ} \mathrm{C}$	$180^{\circ} \mathrm{C}$	2. Испытание корроз. действия выдерживает
	3. Тем-ра застывания $-30^{\circ} \mathrm{C}$ 4. Кислотное число не более $-0,14$ МГ КОН/1 гр. масла	0,2 МГ КОН/1 гр. масла	3. Содержание свободных щелочей в пересчете на NaOH в \% не более - 0,2\%
	5. Зольность ие более - 0,007\%	0,007\%	4. Содержание свободньх органическнх кнслот - отсутств.
	6. Содержание мех. прнмесей отсутствие	0,007	5. Содержаиие воды $-2,5 \%$
	7. Содержание водорастворимых кислот и щелочей - отсутствие 8. Содержание воды - отсутствие	отсутствие отсутствве	6. Содер. мех. примесей $-0,25 \%$

6.4. Описание системы смазки

В станке применена автоматическая централизованная система смазки шпиндельной бабки и коробки подач.

Шестеренный насос 5 (рис. 3), приводимый от электродвигателя главного привода через ременную передачу, засасывает масло из резервуара и подает его через сетчатый фильтр 7 к подшипникам шпинделя и на маслораспределительные лотки. Примерно через минуту после включения өлектродвигателя начинает вращаться диск маслоуказателя 1 на

$$
\begin{aligned}
& \text { фильтр заливнои } \\
& \text { с магнитным вкладынем }
\end{aligned}
$$

Рис. 3. Схема смазки

Рис. 3а. Схема смазки

шпиндельной бабке. Его постоянное вращение свидетельствует о нормальной работе системы смазки Из шпиндельной бабки и коробки подач масло через заливной сетчатый фильтр 8 с магнитным вкладьшем сливается в резервуар. В процессе ваботы нескходимо следить за вращением диска маслоуказателя 1 на шпиндельной бабке. При его остановке необходимо тут же выключить станок и пчистить сетчатый фильтр 7. Для этого его нало вынуть из корпуса резервуара. гредварительно отспединив трубы, отвернуть гайку. расположенную в нижней части, и снять фильтрующие сетчатые элементы в пластмассовой оправе. Кажлый эпемент промыть в керосине до полного очишения. Нельзя продувати, фильтрующие элементы сжатым воздухом, т. к. это может привести к повреждению мелкой сетки. Посте очистки фильтр собрать, установить в резервуар :: подсоединить трубы.

В новом станке целесообразно в течение первых двух недель чистить сетчатый фильтр 7 не реже пвух раз в неделю, а затем - раз в месяц.

Для очистки заливного фильтра 8 с магнитным вкладышем его нужно удалить из резервуара. снять крышку, вынуть из стакана магнитный вклахыш и промыть в керосине все поверхности. Залнвной фильтр 8 нужно чистить один раз в месяц.

В НИМАНИЕ! Фильтры 7 и 8 необходимо обязательно чистить перед и после каждой смены масла.

Ежедневно перед началом работы нужно прове \wedge рять по указателю уровень масла в резервуаре и при необходимости доливать его через отверстие заливного фильтра 8. При замене масла слив из резепвуара осуществляется через пробку 4. Перед тем

как заполнить резервуа: маслом, его надо очистить ч промыть керосином.

Смазка механизма фартука автоматическая. осушеспвляется от индивидуапьчого плунжерного насоса 5. Масто заиивается 3 корлус через отвер-= стие 6 , закрываемое пробкой а стивается через лтјерсій 4. Уровень масла контролируется по маслоуказателю 1 на лицевой сторонє фартука.

Смазку направляюмни каретки и поперечных са лазок производят в начале і! в сепедиис смены, до появления масляной пленки на направляюших. При винторезных работах смазка напраеллющих, а также опорных втулок ходового винта, размещенных в фартуке, производится вышеописанным образом при выключенной, посредством рукоятки 15 (рис. 9) маточной гайке.

Смазка опор ходового вала и ходовото винта и задней бабки осуществляется фитилями из резервуа• ров, в которые масло заливается через отверстие 6 , закрываемое колпачком. Причем резервуар задней бабки заполняется до вытекания масла через отверстие на лицевой стороне корпуса.

Ежедневно в конце смены снять резцовую толовку 43 (рис. 27) очистить ее рабочие поверхности и смазать конусную ось резцедержателя.

Сменные шестерни и ось промежуточной сменной шестерни (точка 9) смазываются вручную консистентной смазкой.

Остальные точки смазываются вручную при помощи масленки, поставляемой сп станком.

В Н И МАН И Е! Первую замену масла производить через месяц после пуска станка в эксплуатацию, вторую - через 3 месяца, а далее - строго руководствуясь указаниями карть смазки.

7. ЭЛЕКТРООБОРУДОВАНИЕ

7.1. Общие сведения

Для обеспечения высокой надежности в работе и обслуживания электрооборудования станка спещиалистами средней квалификации вся релейно-контакторная аппаратура и другие электроаппараты имеют простую конструкцию и ислытаны многолетней эксплуатацией в различных условиях.

Электроаппаратура (за исключением нескольких аппаратов) смонтирована в шкафу управления, расположеннюм с задней стороны станка.

Электрооборудование станка предназначено для подключения к трехфазной сети переменного тока с глухозаземленным или лзолированным нейтральным проводом.

Основные параметры электрооборудования станка указаны в табл. 1.

	Напряхмение, E			
	сети	yripenerens\|		Yacrora,
8,5 (11,34)	220	220	$\stackrel{24}{36}$	${ }_{60}^{50}$
	380			
	400			
$11.14,7)$	$\begin{aligned} & 415 \\ & 440 \end{aligned}$			
12 (17)	500			
Прижеиание.	черкиу	napamer		непояй

7.2. Подключение станка

При подключении станка необходимо убедиться в соответствии напряжения и частоты питающей сети электрическим параметрам станка, указанным в табл., находящейся на стенке шкафа управления.

Ввод проводов заземления и электропитания может быть выполнен как через верхнюю плоскость ншкафа управления, так и через нижнюю. Для этого фланец с резьбовым отверстием $3 / 4^{\prime \prime}$ труб, служащий для присоединения защитной оболочки сетевых проводов взаимозаменяем с крышкой нижней плоскости шкафа. Подключение станка к питающей сети и системе заземления должно производиться изолированными медными проводами согласно таблице 2.

ВН ИМАНИЕ! При системе энергопитания с изолированным нейтральным проводом снять перемычку между клеммами N и \perp на вводном клеммном наборе $К л 1$ (рис. 6 нли 7,) установленном в шкафу управления.

В случае необходимости выполнения заземления станка стальной шиной используется специальный болт, расположенный на задней стороне станка под мшкафом управления, при этом количество вводимых проводов сокращается на один.

Таблина 2

Системаяерпопитания	Напряжение сети, в	Иэалировянныद медяйй провод	
		сечение, м 2	количество
С глухозазем ленным нейтральным проводом	220	6	4
	380-500	4	
С изолированным нейтраль ным проводом	220	6	5
	380-500	4	

7.3. Указания по технике безопасности

Станок должен быть надежно подключен к цеховому заземляющему устройству.

Электрическое сопротивление, измеренное между винтом заземления и любой металлической частью станка, которая может оказаться под напряжением в результате пробоя изоляции, не должно превышать 0,1 ом.

КАТЕГОРИЧЕСКИ ЗАПРЕЩАЕТСЯ работать с открытыми клеммной коробкой и шкафюм управления.

В шкафу управления установлено устройство предохранительное светосигнальное-показывающее наличие напряжения между выходными клеммами вводного автоматического выключателя и нейтральным ароводом.

Необходимо помнить, что при отключенном вводном автоматическом выключателе его зажимы и вводный клеммный набор $К _1$ находятся под напряжением питающей сети, поэтому следует избегать прикосновения с ним.

7.4. Блокировочные устройства

В электросхеме предусмотрена блокировка, отключающая вводной автоматический выключатель при открывании двери шкафа управления. При включенном вводном автоматическом выключателе открывание двери шкафа приводит к срабатыванию. путевого выключателя $К Б Ш$ (рис. 4), который возбуждает катушку дистанционного расцепителя $B B$, и автоматический выключатель отключает электро* оборудование станка от сети. При открывании кожуха сменных шестерен срабатывает микропереключатель $K Б О$, отключая электродвигатель главного привода.

Путевой выключатель КБШ смонтирован в шкафу управления, микропереключатель $K Б O$ - на корпусе коробки подач.

Pис. 4. Схема электрическая принциналыл:

1. A Схема при устаноике роле писмени тины ग口 42
2. * Элементы для станкоа с гндросуинортом

PиІс. 5. Схема электрическая соединений

* ${ }_{*}$ Для станков без гидросуппорта

Для осмотра и наладки электроаппаратуры піод напряжением (при открытой двери шкафа) в схеме предусмотрен неблокируюший переключатель, ПV/, установленный в шкафу управления. Этим переключателем должны пользоваться только специа-листы-электрики.

Переключатель ПУІ следует установить в положение «Дверь открыта», после чего можно вклочить вводной автоматический выключатель и приступить к наладочным работам.

По окончании тусконаладочных или ремонтных работ переключатель ПУІ поставить в первоначаль. ное положение «Дверь закрыта», иначе закрыванне двери шкафа вызывает самопроизвольное отключение вводного автоматического выключателя.

В станках, оснашенных гидросуппортом, электродвигатель главного привода отключается при разъединении штепсельного разъема $Ш I I$, подключающето электродвигатель гидростанции. В случае использования такого станка без гидросуппорта вместо вставки пштепсельного разъема необходимм установить специальную заглушку, поставляемую комплектно со станком.

7.5. Инструкция
 по первоначальному пуску станка

7.5.1. При первоначальном пуске станка необходимо путем внешнего осмотра проверить надежность заземления и качество монтажа электрооборудования. После осмотра отключить на клеммных наборах в шкафу управления провода питания всех электродвигателей и при помощи вводного автоматического выключателя $B B$ станок подключить к цеховой сети.
7.5.2. Піроверить действие всех блокировочных устройств по п. 7.4.
7.5.3. Проверить при помощи органов ручного управления (п. 7.6) четкость срабатывания магнитных пускателей и реле.
7.5.4. При достижении четкой работы всех электроаппаратов, расположенных в шкафу управления, подсоединить ранее отключенные провода к клеммным наборам.

Поочередным включением электродвигателей главного привода, быстрых перемещений суппорта и гидростанции проверить правильность направления их вращения по табл. 3.

Таблица 3

Электродвигатель	Направленне врацения
Главного привода	Против часовой стороны вала) Быстроло леремешения По часовой стрелке (со сторо- ны вала) По часовой стрелке (со сторо- Нидростанции ны вентилятора) По маркировке ианесенной на корпусе

Убедившись в правильности вращения электродвигателей, можно приступить к опробованию станка в работе.

7.6. Органы управления

7.6.1. На лицевой сгороне шкафа управления имеются следующие органы управления:

рукоятка включения и отключения вводного автоматического выключателя с максимальным и дистанционным расцепителями;

сигнальная лампа с линзой белого цвета, сигна_ лизирующая о включенном состоянии ввводнопо автоматического выключателя;

переключатель для включения и отключения электронасоса охлаждения;

указатель нагрузки, показывающий загрузку электродвигателя главного привода.
7.6.2. На карепке установлена кнопочная станция пуска и останова электродвигателя главного привода.
7.6.3. В рукоятке фартука встроена кнопка включения электродвигателя привода быстрых перемещений суппорта.

7.7. Описание электросхемы

Пуск электродвигателя главного привода M1 и гидростанции $M 4$ осуществляется нажатием кнопки (рис. 4), которая замыкает цепь катушки контактора $К Г$, переводя егөна самопитание. .

Останов электродвигателя главного привода $M 1$ осуществляется нажатием кнопки \bigcirc.

Управление электродвигателем быстрого перемещения каретки и суппорта $M 2$ осуществляется нажатием толчковой кнопки, встроенной в рукоятку фартука, воздействующей на конечный выключатель $К Б П$.

Пуск и останов электронасоса охлаждения М3 производится переключателем ПУ2.

Работа электронасоса сблокирована с өлектродвигателем главного привода $M 1$ и включение его возможно только после замыкания контактов пускателя $К Г$.

Для ограничения холостого хода электродвигателя главного привода в схеме имеется реле времени $P B$. В средних (нейтральных) положениях рукояток включения фрикционной муфты главного привода замыкается нормально закрытый контакт конечного выключателя $K O X$ и включается реле времени $P B$, которое через установленную выдержку времени отключит своим контактом электродвигатель главного привода. Производить перестройку выдержки времени в рабочем состоянии реле категорически запрещается.

Защита электродвигателей главного привода, прнвода быстрого перемещения карепки и суппорта, электронасоса охлаждения и трансформатора от токов коротких замыканнй производится автоматическими івыключателями и плавкими предохранителями.

Рис. 6. Шкаф управления. Расположенне электроаппаратов при установке пневматического реле времени

Ппинечание: Тепловое реле РТА устанавлннаетси толико ни стаиках с гндросуппортом

Рис. 7. Шкаф управлення. Расположение электроалпаратов при установке моторного реле времени.
Принечанне. Тепловое реле РТА устанавлнвастся только иа станках с гидросупнортом

马аинта электродвитателеї (кроме электродвигатия M2) от длителыных перегрузок осупествляетея теиловыми реле. Номинальнье даи!ье апнаратов пзменяющиеся в зависпмости от напряжения питаюшей сети приведены в табл. 4.

Нулевая защита электросхемы станка, предохраняюниая от самопроизвольного включения электропривода при восстановлении нодачи электроэнергин после внезапного ее отключения, осуцествляется катуииками магнитных л!ускателей.

Таблина 4

$\begin{gathered} \text { Обозначе- } \\ \text { нехеппо } \\ \text { схеме } \\ \text { (рие. 4) } \end{gathered}$	Напряжение				
	220	380×400	415	440	500
A	$\begin{gathered} 40 \mathrm{~A} \text { или } \\ 34 \mathrm{~A}, 25 \mathrm{~A}^{*} \end{gathered}$	20A, ! 5 A*		$15 A$	15A, 10A*
ABI	6 Отсечка $12 I_{n}$				
BB	50A, 32A*	$32 A$ иллн 25 A			
	Otcerisa 12Iİ				
PTA	5A	$3,2 A$			
PT「	$\begin{aligned} & 40 \mathrm{~A} \text { нли } \\ & 32 \mathrm{~A}, 25 \mathrm{~A}^{*} \end{aligned}$	20A, 16A*			
PTO	0,5A	0,32A			

* При монности электродвигателя :лавиого иинівода 7,5 квт.

7.8. Рекомендации по обслужиганмю электрооборудования

7.8.1. Необходимо периодичеоки проверять состояние пусковой и релейной аппаратуры. Bсе детали электроаппаратов должны быть очищены от пыли н грязн. При образовании на контактах нагара последний должен быть удален при помощи бархатного напильника или стеклянной бумаги. Во избежание появления ржавчины поверхность стыка сердечника с якорем пускателя нужно периодически смазывать машинным маслом с последующим обязательным протиранием сухой тря!кой (для предохранения от прилипания якоря к сердечнику).

При осмотрах релейной аппаратуры особое внимание следует обращать на надежность замыєкания щ размыкания контактных мостиков.
7.8.2. Периодичность технических осмотров электродвигателей устанавливается в зависимости от производственных условий, но не реже одного раза в два месяца.

При технических осмотрах проверяется состояние вводных проводов обмотки статора, производитея очистка двигателеї от загрязнения, контролируется

надежность заземления и сосдииения вала с ири водиым псханизмом

Периоднчность нродилактинеских ремоиткв уста навливается в зависимости от производслвення условий, но не реже одного раза в год.

При профилактических ремонтах должна проия водиться разборка электродвигателей, очисти внутренних и наружных поверхностей и замена смаз ки подшипников.

Замену смазки подшипников при нормальны: условиях эксплуатации следует производить чере: 4000 час работы, а при работе электродвигателя пыльной и влажной среде - чаще (по мере необхо щимости).

Перед набивкой свежей смазки подшипникя должны быть тцательно промыты бензином.

Камеру заполнить смазкой на $2 / 3$ ее объема.
Рекомендуемые смазочные материалы приведень в табл. 5.
7.8.3. Профилактический осмотр автоматическия выключателей необходимо производить не реже од. ного раза в шесть месяцев, а также после каждого отключения при коротком замыкании, в том числе в повторном.

При осмотре нужно очистить выключатель оп копотн 'и нагара металла, проверить затяжку винтов. целостность пружин и состояние контактов.

Шарниры механизма выключателя следует периодически (примерно через $2 \div 3$ тысячи включений) смазывать приборным вазелиновым маслом.

Элєктромагнитные расцепители максимального тока и дистанционного расцепителя автоматичоских выклочателей тарируются на заводе-изготовителе поэтому какая-либо дополнительная регулировка не требvется.

Tаблйа 5

7.9. Спецификация электрооборудования

Таблица 6

8. ПНЕВМООБОРУДОВАНИЕ

Пневмооборудование служит для создания воздушной подушки, облегчающей перемещение задней бабки по станине и предотвращающей износ направляющих. Пневмоаппараты смонтированы с задней стороны станка.

Пневмооборудование нужно подключить к цеховой сети сжатого воздуха. Для этого на правой стойже имеется труба с наружной резьбой $3 / 8^{\prime \prime}$ труб.

Подача воздуха на направляющие производится при нажатии кулачка, укрепленного на рукоятке 18 (рис. 9), на толкатель клапана 1 (рис. 8) при пере-

Спецификация пневмоаппаратов

N_{6} по схеме (рис. 8)	Наименованне	Тип	Количество
1	Kлапаи трехходовой	ИВ76-21	1
2	Маслораспылитель	B44-23	1
3	Фильтр (влагоотделитель)	B41-13	1

мещении рукоятки на рабочего. По окончании работы салфеткой удалить влагу с направляюоциу и покрыть их тонким слоем масла.

Ежедневно перед началом работы необходммо спустить влагу из фильтра 3 посредством поворота воротка, установленного в его нижней части.

Регулярно один раз в $2-3$ месяца по мере поднятия конденсата до уровня заслонки фильтр ? снимать для очистки и промывки. В маслораспылитель 2 по мере опорожнення корпуса заливать масло «Индустриальное 20»ГОСТ 1707-51.

Рис. 8. Схема пневмооборудования

9. ОРГАНЫ! УПРАВЛЕНИЯ

Phc. 9	Органы управлення и их назначение		Горимечание
1	Рукоятка установки јјяда чисел оборотов :штиндетя	 मия intoromineman mend	Переключать, кола руколтки \& и 16. ч тановлены в соедних положениях. І Іри затрулнении включения слегка повериуть вручную шииндель
2	Рукоятка установи цисла пборотов нлнндеяя		То же
3	Рукоятка установкн порманиого, увеличенного пиага резибы и положе. ния прн делеиин миогозаходинх резьб		"
4	Рукоятка установки правой и девый резьбы		"
5	Рукоятка установки величниы подачи и шага резьбы		ν
6	Рукоятка установки внда работ: подачи и типа нарезаемой резьбы	То же	》
7	Рукоятка установки величины подачи и шага резьбы и отключения механизма коробки подач при нарезанни резьб напрямуюо	Четыре фиксированных положения, обозначенных буквами, и два промежуточных, обозначеиных стиелками	》
8	Рукоятка управления фрикционнои муфтой главного привола (сблокнрована с рукояткой 16)	положенне -- муфта выклочепа, тормоз включеп. Перемещенне на себя и поворот вправо - включение прямого врацения шпинделя. Перемещение на себя и поворот влево - включение обратного врацения шпинделя	Пользоватьея при включенном выключателе 30 (сигнальная лампа 29 светится) и после нажатия черной кнопки «Пуск» на кнопочной станцни 12
9	Kıонка золотника смазки нанравляюощих каретки и поперечиых салазок супиорта	Нажатие - открывание золотнка	См. разделы 5 и 9
10	Маховик ручного перемещения каретки	Вращение против часовой стрелки перемещение каретки влево. Вращение по часовой стрелке - перемецение каретки вправо	Пользоваться при отвернутом болте 13 , включенной рукоятке 11 и выключенных рукоятках 15 и 20

Рис. 9	Органы управления и их пазначенне	Способ нспольоования	Првметание
11	Рукоятка включения н выключения реечной шестерни	Перемещение от себя - сиепление шестерни с рейкой. Перемещение на себя - расцеплеиие шестерни с рейкой	Включать (сцеплять шестерню с рейкой) при выключеннои рукоятке 15. При затруднении включения слегка повернуть маховик 10. Выключать при нарезании точных резьб.
12	Кнопочная станция включения и выключения электродвигателя главного привода	Нажатие черной кнопки - включение электродвигателя. Нажатие красной кнопки - выключеиие электродвигателя	Черную кнопку нажнмать при включенном выключателе 30 (сигнальная лампа 29 светится). Красной кнопкой пользоваться в случае необходимости выключення электродвигателя и для экстренной остановки станка
13	Болт закрепления каретки на станине	Поворот болта ключом по часовой стрел-ке- закрепленне каретки. Поворот болта ключом против часовой стрелки - открепление каретки	Каретку закреплять при транспортировке станка и тяжелых торцовых работах
14	Рукоятка включения подачи	Поднятие вверх - включение червяка фартука	Пользоваться при работе по упорам или прн выключенни подачи в результате перегрузки
15	Рукоятка включения и выключения гайки ходового винта	Поворот вниэ - включение гайки. Поворот вверх - выключение гайки	Пользоваться в случае нарезания резьб при выключенной рукоятке 20. При затруднении включения маховиком 10 слегка переместить каретку. После включения рекомендуетея рукояткой /I выключить реечную шестерню
16	Рукоятка управления фрикционной муфтой главного привода (сблокирована с рукояткой 8)	Три фиксированных положения. Среднее положенне - муфта выключена. тормоз включен. Нажатие влево и поворот вверх - включение прямого вращения шпинделя. Нажатие влево и поворот вниз - включение обратного вращения шпинделя.	То же, что для рукоятки 8
17	Маховик перемещения пиноли задней бабки	Вращение по часовой стрелке - перемещенне пиноли влево. Вращенне протнв часовой стрелки - перемещение пиноли вправо	Вращать, когда рукоятка 19 находится в левом положении
18	Рукоятка крепления задней бабки к станнне к станнне	Поворот от себя - закрепление задней бабки. Поворот на себ́я - открепление задней бабки	Задняя бабка должна постоянно находиться в закрепленном состоянии. Открепление производить только при установочных перемецениях задней бабки по станине
19	Рукоятка бабки зажима пнноли задней	Поворот вправо - пиноль зажата. Поворот влево - пиноль разжата	Зажимать при обработке деталей в центрах
20	Рукоятка управления механическими перемещениями каретки и поперечных салазок суппорта	Поворот влево - включение перемещения каретки влево. Поворот вправо включение перемещения каретки вправо. Поворот от себя-включение перемещення поперечиых салазок вперед. Поворот на себя - включение перемещення поперечных салазок назад	Пользоваться при включенной рукоятке 11 и выключенной рукоятке 15
21	Қнопка включения электродвигателя привода быстрых перемещеннй кареткн и попересных салазок суппорта	Нажатие - включение электродвигателя	Пользоваться для осуществлення быстрых холостых перемещений суппорта при включенной рукоятке 20
22	Рукоятка ручного перемещення резцовых салазок суплорта	Вращение по часовой стрелке - перемещение салазок влево Вращение протнв часовой стрелки - перемещение салазок вправо	Станок 16K20П комплектуется устройством для механичеокого перемещения резцовых салазок. Включение перемецения осуществляется вытягиваинем кнопки 122 (рис. 29) прн затянутой рукоятве 129 (рнс. 30)
23	Рукоятка поворота н закрепления индексируемой резшовой головки	Вращение против часовой стрелки - открепление и поворот резцовой головки. Вращенне по часовой стрелке - фикснрованне и закрепление резцовой головки	Резцовая головка может быть установлена в любом промежуточном положении, кроме четырех фиксированных

Pис. 9	Органы управления и нх назначение	Способ использования	Примеч:"не
24	Выключатель лампы местиого осве- щения	Поворот в стороиу цоколя лампы включение. Поворот в сторону колб́, лампы - выключение	ГІользоваться ири вклочениом вы- кличателе 30
25 26	Рукоятка ручного перемещения поперечных салазок супиорта	Вращение по часовой стрелке - переме щение салазок вперед. Вращение против часовой стрелки - перемещение салазок назад	Работает ири выклкисниоі рукият-
26 27	Регулируемос сопло подачи охлаждаюшей жндкости	Поворот по часовой стрелке -- уменьше ние количества охлаждающей жидкости, подаваемой к режущему инструменту. Поворот против часовой стрелки - увеличение	Пользоваться при вклкиениом в,лкмм чателе 28
27	$У_{\text {казатели пагрузки станка }}$	Служит для определения иагрузки иа электродвигатель главного привола при обработке деталей. Закрашениая зона является зоной макснмальнюо кпд станка, а правая ее граиица является предельной, переход стрелки за которую не допускается	BHUMAHHE! В дианазоне числа оборотов инииделя $12,5-40$ предельние зиачсиня пагрузки следуст брать но таблинц (см. раздел 12.1.2)
28 88	Выклочатель эыекрроиасоса иодачи охлаждаюией жидкости	Включение и выключение пронзводится в соответствии с символами на панели электрошкафа управления	чателе 30
29 30	Спгнальная лампа	Лампа светится - электропитание вкиючено	Загорается при включении выкпияиателя 30
30	Вводной автоматниеский викличатели	Вклочение и выключение производытюя в соответствии с символами на панел? электроикафа управления	Вкичиепие и выклочешне контрлируется лампой 29. Автоматияеске выключение может происходить, по причинам, названным : разделе 7 «Элетриоборудование»

Приведение в дейстие всех органов управления, за исключением боита 13 , дално осуиестиятвяя только от руки. Применение дополнительных средств (рычагов, труб : т. н.) катеторическп заирецастся.
 возможиым, обращайтесь на завод-изготовитель.

Рис. 9. Органы управлеиия станком

10. ПУСК СТАНКА И НЕКОТОРЫЕ УСЛОВИЯ ЭКСПЛУАТАЦИИ

Последовательно включая станок без нагрузки на различных числах оборотов и подачах, начиная с минимальных, в течение нескольких часов убедиться в нормальной работе всех механизмов.

После этого можно приступить к наладке станка на обработку деталей.

ВАЖНО! В течение первых 50-60 час для приработки работать только на средних скоростях и нагрузках, особюе внимание уделяя контролю функцнонирования системы смазки.

Станки предназначены для использования пре」 имущественно в инструменталыных и ремонтных цехах в условиях мелкосерийного и единнчного производства на разнообразных чистовых и получистовых работах. Температура в помещении, где они устанавливаются, должна быть в пределах от 10 до $30^{\circ} \mathrm{C}$, относительная влажность - не более 80% при $10^{\circ} \mathrm{C}$ или 60% при $30^{\circ} \mathrm{C}$.

Период сохранения первоначальной точности и долговечности станка зависит от окружающей среды, поэтому недопустимо устанавливать станки в помещениях с высокой концентрацией абразивной пыли, окалины.

Обработка чугунных деталей способствует повышенному износу трущихся частей, поэтому при обработке таких деталей нужно несколько раз в смену особенно тщательно удалять стружку и пыль с направляющих станины н каретки и смазывать их

Желательно, чтобы обработка чугунных деталей не превышала 20% от общего количества изделий.

Для длительного сохранения первоначальной точности не рекомендуепся совмещать на одном станке чистовые и обдирочные операции (как отмечалось выше, это в особенности относится к станку $16 \mathrm{~K} 20 \Pi$).

Минимальная рекомендуемая скорость перемещения каретки 10 мм/мин.

Нельзя обрабатывать детали с дисбалансом, превышающим указанный в таблице.

Число оборотов шпинделя в мннуту	Дисбаланс [$\mathrm{C} \cdot \mathrm{R}$], кг:cm	
	Крепление в патроие	Установка в центрах
630	55	120
1250	15	30
1600	8	16

Нужно избегать обработки изделий с ударом.
Диаметр сверла при сверлении чугунных деталей не должен превышать 28 мм ($11^{\prime \prime} 8^{\prime \prime}$), при сверлении стальных деталей - 25 мм (${ }^{\prime \prime}$).

Станок, оставленный на длительное время (свыше двух суток), должен быть покрыт чехлом и все его неокрашенные поверхности тщательно смазаны.

II. УКАЗАНИЯ ПО УСТАНОВКЕ И ИСПОЛЬЗОВАНИЮ ПАТРОНОВ И ЛЮНЕТОВ

Патрон соединяется со шпинделем при помощи переходного фланца 17 (рис. 14 и 17).

Четыре шпильки 16 вворачиваются во фланец 17. Затем фланец сажают на конус шпинделя. При этом замковое кольцо 240 должно быть устаиовлено таким образом, чтобы обеспечить свободное прохождение шпилек 16 сквозь отверстия. После установки фланца 17 замковое кольцо 240 поворачивают, и посредством равномерного перекрестного затягивания гаек 14 достигается беззазорное прилегание торцов фланца 17 патрона и фланца шпинделя 232 и 238 .

Корпус патрона центрируется по цилиндрическому пояску фланца 17 и притлгивается к нему винтами.

Перед началом монтажа следует убедиться в отсутствии забоин на сопрягаемых поверхностях и тщательно протереть их салфеткой, не оставляющей ворса.

Точность посадки патрона на шпиндель проверяется индикатором по контрольному пояску, рас-

положенному на наружной цилиндрической поверхности корпуса патрона.

Радиальное биение не должно превышать 0,02 жм.

Для обеппечения надежности зажима и безопасности работы следует стропо придерживаться требований, изложенных в паспорте патрона. Паспорт находится в ящике, в котором упакован патрон.

Установка патрона типа СТ-250П-Ф6 без пере ходного фланца осуществляется вышеуказанным опособом.

Подвижный и втулочный люнеты устанавливаются на платиках каретки с левой стороны и закрепляются двумя болтами М16×70.66.05 ГОСТ 7808—70. Втулочный люнет, у которого отверстие расточено по линии центров, выставляется при помощи двух конических штифтов 12×70 ГОСТ 9464-70. Неподвижный люнет устанавливается на станине слева от каретки.

12. MEXAHИKA СТАНКА

12.1. Механизм главного движения

12.1.1. Установка числа оборотов шпинделя осуществляется двумя рукоятками 1 н 2 (рис. 9) по таблице (рис. 10), помещенной на шпиндельной бабке. В правой части таблицы даны ряды чисел оборотов шпинделя в минуту при прямом вращении и указаны положения рукояток для установки требуемого числа оборотов.

Рукояткой 1 устанавливается один из четырех рядов чисел оборотов шпинделя в соответствии с обозначением ноложения рукоятки, нанесенным на таблице.

Рукояткой 2, на ступице коюой панесены циф ры от 1 до 6 , устанавливается чрсбуемое пино оборотов из выбранного ряда.

Для этого цифру, обозначаюиу" требуемое число оборотов по таблице, нужно совместить с вертикальной стрелкой, изображенной над рукояткой.

Примечание. На рис. 10 изображена таблица для основного исполнения станков с пределами числа оборотов шпинделя в минуту 12,5-1600. Установка чисел оборотов шпинделя на станках с другими диапазонами, поставляемых по особому заказу, производится аналогично по таблпце, помещенной нз штиидельной бабке станка.

Таблица 1
12.1.2. Наибольший допустимый крутяший момент на шпинделе и наибольшая допустимая мощиость

[^0]
12.2. Установка подач

Установка величин подач осуществляется руко ятками 5 и 7 (рнс. 9) в соответствии со значениями, указанными в средней верхней части таблицы (ріис. 10).

ВНИМАНИЕ! Табличные значения величин подач могут быть получены только при установке сменных шестерен $t=\frac{K}{L} \cdot \frac{L}{N}=\frac{40}{86} \cdot \frac{86}{64}$ на станках 16K20, 16 K 20 П, 16 K 20 Г и сменных шестерен $\mathrm{t}=$ $=\frac{K}{L} \cdot \frac{L}{N}=\frac{45}{86} \cdot \frac{86}{72}$ на станке 16 K 25 .

В таблице (рис. 10) даны значения величин продольных подач. Величина поперечной подачи составляет $1 / 2$ продольной.

Для установки величин подач, равных удвоенным табличным значениям, можно воспользоваться указаниями раздела 12.3.3.

12.3. Инструкция по нарезанию резьб

12.3.1. При отправке с завода на станках 16 K 20 , $16 \mathrm{~K} 20 \Pi$, 16 K 20 Г устанавливаются сменные шестерни с числом зубьев $z=40, z=86, z=64$ и шестерня с $z=36$, выполняющая в данной комбинации функции проставка, а на станке 16 K 25 - сменные шестерни с $z=45, z=86, z=72$ и сменная шестерня с $z=73$, служащая проставком.

Комбинации сменных шестерен $\frac{K}{L} \cdot \frac{L}{N}=\frac{40}{86} \cdot \frac{86}{64}$ (на станках $16 \mathrm{~K} 20,16 \mathrm{~K} 20 П, 16 \mathrm{~K} 20$ Г) и $\frac{K}{L} \cdot \frac{L}{N}=\frac{45}{86} \cdot \frac{86}{72}$ (на станке 16 K 25) обеспечивают нарезание метрических и дюймовых резьб с шагами, величины которых указаны в средней нижней части таблицы (рис. 10).

Для этого рукояткой 6 надо установить необходимый тип нарезаемой резьбы, а рукоятками 5 и 7 выбрать требуемый шаг.

Шестерни, входящие в основной набор, указаны в разделе 19.5 .
12.3.2. Установив на станках $16 \mathrm{~K} 20,16 \mathrm{~K} 20 \Pi$, $16 \mathrm{~K} 20 \Gamma$ комбинацию входящих в основной набор сменных шестерен $\frac{K}{L} \cdot \frac{M}{N}=\frac{60}{73} \cdot \frac{86}{36}$ и на станке 16 K 25 комбинацию $\frac{K}{L} \cdot \frac{M^{\prime}}{N}=\frac{80}{73} \cdot \frac{86}{48}$, можно нарезать модульные и питчевые резьбы, величины шагов которых устанавливают рукоятками 5 и 7 по таблице (рис. 10). При этом рукоятку 6 следует переключить на соответствующий тип резьбы.
12.3.3. Установкой входящих в основной набор сменных шестерен комбинации $2 \mathrm{t}=\frac{K}{L} \cdot \frac{L}{N}=\frac{60}{86} \cdot \frac{86}{48}$ (на станках $16 \mathrm{~K} 20,16 \mathrm{~K} 20 П, 16 \mathrm{~K} 20 \Gamma$) или ком6инации $2 \mathrm{t}=\frac{K}{L} \cdot \frac{L}{N}=\frac{60}{90} \cdot \frac{90}{48}$ (настанке 16 K 25) создается возможность нарезания метрических и дюймовых резьб с шагами, равными удвоенным величинам, указанным в таблице (рис. 10).

Примечание. Прн помощи этих комбинаций сменных шестерен аналогично описанному можно получать велнчины подач. равные удвоенным табличным значениям.

12.3.4. Кроме вышеуказанных, в основные наборы входят сменные шестерни, обеспешиающис нарезание дюймовых резьб с числом ниток па 1 дюйм 11 и 19.

С настройкой станка на нарезание этих резьб можно ознакомиться в п. 12.3.5.
12.3.5. При помощи дополнительного набора сменных шестерен, поставляемых по особому заказу, и шестерен основного набора на станках через механизм коробки подач можно нарезать целый ряд резьб, шаги t которых приведены в левой части таблицы (рис. 10).

Настройка станка для нарезания этих резьб осу. ществляется с помощью сменных шестерен, указанных в левой части таблицы (рис. 10). Сменные шестерни, указанные в левой части таблицы (рис. 10), но отсутствующие в основном наборе, ноставляются по особому заказу (раздел 19.5).

Шестерни, указанные в таблицах (рис. 11 и 12), поставляются по особому заказу.

Так же, как и в описанных выше случаях, рукояткой 6 устанавливается тип резьбы. Затем в зависимости от выбранного шага t соответствующими рукоятками устанавливается табличное значение, указанное в средней нижней части таблицы (рис. 10).

Пример. Для нарезания питчевой резьбы с пагом 11 питчей рукоятку 6 нужно поставить в положение, соответствующее нарезанию этой резьбы, рукоятку 7 - в положение D и рукоятку 5 - в положение $I I I$, что соответствует шагу 6 питчей по табтице (рис. 10).

На станках $16 \mathrm{~K} 20,16 \mathrm{~K} 20$ П, 16 K 20 Г следует установить комбинацию сменных шестерен $\frac{K}{L} \cdot \frac{M}{N}=\frac{60}{73} \cdot \frac{86}{66}$ а на станке $16 \mathrm{~K} 25-$ комбинацию $\frac{K}{L} \cdot \frac{M}{N}=\frac{60}{66} \cdot \frac{86}{73}$
12.3.6. Формулы подбора сменных шестерен для нарезания через механизм коробки полач резьб, не приведенных в таблице (рис. 10).

Пример. При необхпдимости нарезання метрической резьбы с шагом $t=18$ мм пужно вослользоваться формулами, иривецсиными в таблице 2.

По таблице (рис. 10) в ряду метричсских резьб находим значение шіага резьбы, ближайшее к нарезаемому.

Таковыми являются $t=16$ и $t=20$. В нашем случае выберем, например, шаг $t=20$ и подставим значения в формулы для нахождения числа зубьев z шестерен, которые необходимо изготовить для нарезания этой резьбы $t_{\text {нар. }}=18, t_{\text {табл. }}=20$.

Станки 16 K 20, T6K20 IT, $16 \mathrm{~K} 20 \mathrm{\Gamma}$

$$
\frac{K}{L} \cdot \frac{M}{N}=\frac{5}{8} \cdot \frac{t_{\text {map }}}{t_{\text {rafil }}}=\frac{5}{8} \cdot \frac{18}{20}=\frac{90}{160}=\frac{9}{16}=\frac{9 \cdot 4}{16 \cdot 4}=\frac{36}{64}=\frac{36}{86} \cdot \frac{86}{64} .
$$

Станок 16 K 25

$$
\begin{gather*}
\frac{K}{L} \cdot \frac{M}{N}=\frac{5}{8} \cdot \frac{t_{\text {map }}}{t_{\text {ra } A}}= \\
=\frac{5}{8} \cdot \frac{18}{20}=\frac{5}{8} \cdot \frac{9}{10}=\frac{5 \cdot 9}{8 \cdot 9} \cdot \frac{9 \cdot 9}{10 \cdot 9}-\frac{45}{72} \cdot \frac{81}{90}=\frac{45}{90} \cdot \frac{81}{72} \tag{2}
\end{gather*}
$$

При вычислении чисел зубьев сменных шестерен, требуемых для нарезания резьбы, шаг которой • отсутствует в таблице, следует подбирать такие коэффицненты, которьіе гозволили бы максимально нсиользовачь шестернн, поставляемые со станками.
 коэффицнент, равный 4 , дающий возможность, нслользовать сменные шестерни основноги пй́̃ора с числом зубьев $z=36$ и $z=64$, а в качестве промсжуточной взята шестерня основного набора с числам зубьев $z=86$. шестерня входит в дополнительный набор сменных
шестерен, поставляемых по особому заказу. При наличии такого набора необходимость изготовления ее отпадает.

При настройке станка для нарезания метриче ской резьбы с шагом $t=18$ мм следует установить комбинацию сиенных шестерен $\frac{K}{L} \cdot \frac{L}{N}=\frac{36}{86} \cdot \frac{86}{64}$ или $\frac{K}{L} \cdot \frac{M}{N}=\frac{45}{90} \cdot \frac{81}{72}$ (на станке 16 K 25) и рукоятки 5 и 7 поставить соответственно в положения $I I$ и A или II и C, т. е. для нарезания метрической резьбы с шагом $t=20$ (по таблице рис. 10), а рукояткой 1 установить соответствующий ряд чисел оборотов шпинделя.
12.3.7. Нарезание резьб повышенной точности при непосредственном соединении ходового винта со шпинделем через сменные шестерни с отключением механизма коробки тодач.

Рукояткой 6 установить соответствующий вид резьбы, а рукоятку 7 поставить в нейтральное положение, обозначенное стрелкой (для исключения холостого вращения механизма коробки подач).

Подбор сменных шестерен для нарезания определенного шага резьбы повышенной точности производится по формуле $\frac{K}{L} \cdot \frac{M}{N}=\frac{t}{8}$.

Для нарезания этих резьб при помощи комплекта сменных шестерен, поставляемых заводом, следует васпользоваться данными, приведенными в левой средней части таблицы (рис. 10). Как видно из таблицы, при помощи шестерен основного набора можно нарезать метрические резьбы повышенной точности с шагами $t=5$ мм, $t=10 \mu м, t=12$ мм .

Остальные шаги метрических резьб и дюймовые резьбы, указанные в таблнце, могут быть нарезаны

при использовании дополнительного набора сменных шестерен, поставляемых по особому заказу.
12.3.8. Нарезание мюогозаходных резьб.

Нарезание многозаходных резьб производится следующим образом:

1. Рукоятки 8 и 16 должны находиться в средних положениях.
2. Рукояткой 15 включить гайку ходового винта.
3. Рукоятками 1 и 2 по таблице, помещенной на шпиндельной бабке, установить требуемое число обборотов шпинделя, а рукоятками 5 и 7 - необходимое значение хода нарезаемой резьбы.
4. Проворачивая вручную фланец 24 (рис. 14 и 17), совместить нанесенный на нем указательстрелку с одной из рисож делительного кольца 240 шпинделя, обозначенной каким-либо числом.
5. При нарезании резьб с шагами в пределах метрических и модульных от 0,5 до 7 , дюймовых и питчевых от 56 до 4 , расцепление шпинделя с кинематической цепью станка для деления на число заходов производить посредством установки рукоятки 3 в положение, отмеченное специальным символом, обозначающим отключение шпинделя. Для. остальных шагов резьб расцепление осуществлять поворотом рукоятки 1 из фиксированного в ближайшее промежуточное положение, отмеченное аналогичным символом.
6. Деление на число заходов производить путем поворота вручную шпинделя на число рисок, соответствующее числу заходов нарезаемой резьбы (при двух заходах - на 30 рисок, при трех - на 20 , при четырех - на 15 и т. д.).
7. Рукоятку 1 или 3 установить в исходное положение.
8. Прорезать нитку резьбы.
9. При последующем делении операции, изложенные 'в пунктах 5-8, повторить подобным образом.

Рнс. 11. Чертеж для провержи возможности сцеплення сменных шестерен на станках $16 \mathrm{~K} 20,16 \mathrm{~K} 20 \Pi, 16 \mathrm{~K} 20 \mathrm{\Gamma}$

Рис. 12. Чертеж для проверки возможности сцепления сменных шестерен на станке 16 K 25

Рис. 13. Типовой чвртеж сменной шестерни

- для станка $16 \mathrm{~K} 20 \mathrm{M} \nabla \mathrm{8}$

13. КРАТКОЕ ОПИСАНИЕ ОСНОВНЫХ УЗЛОВ И ИХ РЕГУЛИРОВАНИЕ

13.1. Шпиндельная бабка

(рис. 14-17)
13.1.1. Шпиндельная бабка жестко сбазирована на станине при сборке станка и не требует регулирования в процессе эксплуатащии.
13.1.2. При ослаблении крепления шкива 74 на конусной части вала 69 нужно подтянуть винт 70 (рис. 14).
13.1.3. Крутящнй момент на шпинделе должен соответствовать данным, приведенным в табл. l (см. раздел 12).

При снижении крутящего момента нужно в первую очередь проверить натяжение ременной передачи главного привода (см. п. 13.6). Если натяжение ремней достаточное, следует отрегулировать фрикционную муфту главного привода, расположенную в шпиндельной бабке. Для этого надо открыть крышку 99 (рис. 15) шпиндельной бабки и снять маслораспределительный лоток 162 рис. 16.

Поворотом тайки 62 (рис. 14) по часовой стрелке при утопленной (нажатой) защелке 80 можно подтянуть муфту прямого вращения шпинделя, поворотом гайки 59 против часовой стрелки муфту обратного вращения. Для облегчения регулирования муфты прямого вращения шпинделя рукоятку 8 (рис. 9) нужно повернуть влево, для облегчения регулирования муфты обратного вращения шпинделя - вправо.

Обычно достаточно повернуть гайки 59 и 62 на` 1/16 оборота, т. е. на один зубец. По окончании регулирования нужно убедиться в том, что защелка 80 надежно вошла в пазы паек 59 и 62 .

При повороте гаек более чем на $1 / 16$ оборота нужно обязательно проверить, не превышает ли крутящий момент на шпинделе допустимый по табл. 1 (см. раздел 12).
13.1.4. Если при максимальном числе оборотов шпинделя без изделия и патрона время его торможения превышает 1,5 сек, то нужно при помощи таек 145 подтянуть ленту тармоза.
13.1.5. ВНИМАНИЕ! Шпиндельные подшипники отрегулированы на заводе и не требуют дополнительного регулирования.

В случае крайней необходимости потребитель может силами высококвалифицированных специалистов прибегнуть к регулированию шпиндельных опор.

Однако перед этим необходимо проверить жесткость шпиндельного узла. Для этого на станине под фланцем шпинделя устанавливается домкрат с проверенным в лаборатории динамометром и через прокладку, предохраняющую шлиндель от повреждений, к его фланцу прилагается усилие, направленное вертикально снизу вверх. Смещение шпинделя контролируется аттестован-

ным индикатором с щеной деления не более 0,001 мм, устанавливаемым на шпиндельной бабке и касающимся своим измерительным наконечником верхней части фланца шлинделя. Отклонение шпинделя на 0,001 мм должно происходить при приложенном усилии не менее 45-50 кгс. Если величина напрузки при смещении на 0,001 мм значительно ниже указанной, целесообразнее всего обратиться на завод с подробным описанием методики проверки и указанием измеренных величин, а также сведений о станке, перечисленных в разделе 1. В каждом отдельном случае будет дана конкретная консультация или командирован специалистналадчик.

Примечание. Станки комплектуются передними шпиндельными подшипниками № 3182120 класса «C» ГОこТ $7634-56$ и заднимін № 46216 класса «А» ГОСТ $831-62$ (рис. 14) нли передннми подшипникамн № 697920Л класса *СТ» н заднимй № $17716 Л$ класса «СТ» по ТУСТ5434 (рис. 17). Шпиндельные подшипники заказом не регламентируются.
13.1.6. В случае - необходимости регулировки шпиндельной бабки в горизонтальной плоскости необходимо снять облицовку коробки подач, ослабить винты, крепящие переднюю бабку, и специальным регулировочным винтом отрегулировать положение оси шпинделя по пробным проточкам до необходимой точности.

13.2. Задняя бабка

(рис. 18, 19)
13.2.1. Если рукоятка 19 , отведенная в крайнее заднее положение, не обеспечивает достаточный прижим задней бабки к станине, то нужно пооредством регулирования винтами 26 и 33 при отпущенных контргайках 27 и 34 , изменяя положение лрижимной планки 31, установить необходимое усцлие прижима.
13.2.2. Для установки задней бабки соосно со шиндделем при помощи винтов 41 совмещают в одну плоскость поверхности платиков A, расположенных на опрной плите 28 и корпусе 2.

13.3. Коробка подач
 (рис. 20-22)

13.3.1. При ремонте станка особое внимание следует обратить на ггравильность монтажа механизма переключения зубчатых колес, смонтированного на плите 38 , которая крепится к корпусу 3 коробки подач. Во избежание нарушения порядка сцепления зубчатых колес коробки подач при сборке нужно совместить риски, нанесенные на шестернях 51 и 52.

Рис. 14. Шпиндельная бабка (развертка)

Рис. 17. Шпиндельная бабка (чертеж шпинделя в сборе)

Рис. 19. Задняя бабка
.

Prac. 21. Kоробка поцач

13.4. Фартук

(рис. 23-26)
13.4.1. Регулирование усилия, развиваемого механизмом подач, производится поворотом гайки 11. Величина усилия определяется динамометром, который нужно установить между жестким упором 47 (рис. 28) и кареткой 19 (рис. 27). Следует следить за тем, чтобы величина усилия не превышала допустимую по табл. 1 (раздел 19).
13.4.2. Маточная гайка 62, установленная на кронштейне 61, отрегулирована на заводе.

В случае необходимости восстановления илх замены изношенной гайки при ремонте нужно воспользоваться специальными кондукторным приспо* соблением и метчиком, чертежи на которые могут быть высланы по запросу.

13.5. Суппорт

(рис. 27, 28)
13.5.1. Мертвый ход виита 20 привода поперечных салазок 11 , возникающий при износе гаек 22 ч 23 , устраняется следующим образом.

Снимается крышка 12 и при помощи выколотии (бородка) из мягкого металла отворачиваетея контргайка 15. Выборка зазора в винтовой паре осуществляется вращением гайки 14. Величина зазора определяется по лимбу 40 при легком поворачивании рукоятки 33. Оптимальная величина зазора в винтовой паре соответствует свободному ходу в пределах одного деления лимба. Затем контргайка 15 затягивается и устанавливается крылика 12.
13.5.2. Поставляемый по особому заказу задний резцедержатель 8 устанавливается на поперечных салазках, как это показано на рис. 27.
13.5.3. Если по мере износа рукоятка 4 в зажатом положении останавливается в неудобном для токаря месте, то посредством подшлифовывания или замены проставочното кольца 1 можно установить рукоятку 4 в требуемое положение.
13.5.4. При понижении точности фиксации резцедержателя 43 нужно разобрать резцовую головку и произвести тщательную очистку рабочих поверхностей сопрягаемых деталей.
13.5.5. Установка оптимального зазора между кареткой 19 и планками 18,64 и 66 осуществляется путем шлифования последних.

Выборка зазора в направляющих поперечных салазок 11 и резцовых салазок 9 производится подтягиванием соответствующих клиньев 52 и 42 при помощи винтов, толовки которых расположены в отверстиях протекторов 41 и 49.
13.5.6. Для удобства определения величин перемещения резцовых и поперечных салазок при обработке деталей суппорт снабжен масштабными линейками.

На резцовых салазках 9 установлена линейка с ценой деления 1 мм.

Отсчет производится по визиру, закрепленному на поворотной части 10 суппорта.

На каретке 19 установлена линейка с ценой деления 10 мм на диаметр изделия, по которой

осуществляется контроль величины перемещения поперечных салазок 11 при помощи закрепленного на них визира.

Конструкция линейки, закрепленной на каретке, предусматривает установку жесткого упора поперечных перемещений, поставляемого по асобому заказу.

Жесткий микрометрический упор 47 опраничения продольных перемещений крепится на передней полке станины двумя винтами 82.
13.5.7. Станок 16К20П комплектуется суппортом с механическим приводом резцовых салазок (рис. 29, 30), который также по особому заказу может быть поставлен со станком 16 К 20 . Включение механического перемещения резцовых салазок 9 осуществляется вытягиванием на себя кнопки 122 при зажатой рукоятке 129. Величина подачи резцовых салазок равна $1 / 4$ величины продольной подачи суппорта.

Примечание. Номерами, начинающимнся со 100 , обозначены детали, относящиеся только к сутпорту с механнческим приводом резцовых салазок. Числами меныше 100 - детали, унифиицированные от суппорта с ручным перемещением резцовых салазок) (рис. 27, 28).
13.5.8. Представленная на рис. 33 схема служит для правильной установки заглушек, пробок и прокладок системы смазки в каретку при ремонте станка.

13.6. Моторная установка
 (рис. 32, 33)

13.6.1. При уменьшении крутящего момента на шпинделе (см. табл. 1, п. 12.1.2) в первую очередь следует проверить натяжение ремней главного привода. Если ремни недостаточно натянуты, то нужно. ослабив винты 1 , плавным вращением гайки 7 против часовой стрелки опустить вниз подмоторную плиту 6 до требуемого натяжения ремней, после чего винты 1 завернуть до отказа.
13.6.2. Натяжение ремня привода насоса системы смазки осуществляется поднятием бака 2 , для чего нужно отпустить три винта 3 (на чертеже показан один), при помощи которых бак крелится к подмоторной плите 6 .

13.7. Механизм управления фрикционной муфтой
 главного привода

(рис. 34)
13.7.1. Конструкция механизма исключает возможность включения или выключения фрикционной муфты при случайном нажатии на рvкоятки 12 и 24 , которые сблокированы между собой следующим образом.

При работе рукояткой 12 рукоятка 24 повторяет операции первой. Выключение возможно любой из рукояток. Если же муфта была включена рукояткой 24 , то выключение можно произвести и рукояткой 12 только при условии предварительного поворота этой рукоятки в соответствующее рабочее положение с последующим возвращением в нейтральное (среднее) положение для выключения.

Pис. 24. Фартук (развертка)

Рис. 30. Суплорт с механическим приводом резцовых салазок

13.8. Коробка передач

(сменные шестерни)

(рис. 35)
13.8.1. Коробка передач (сменные шестерни) служит для передачн вращения от выходного вала (ось l) шпиндельной бабки на выходной валя (ось II) каробки лодач с помощью установки комбинаций сменных шестерен в соответствии со схемами таблицы (рис. 10). Станок можно налаживать на нарезание различных резьб.

Сменные шестерни K и N монтируются на шлицевых валах и закрепляются болтами 9 через шайбы 8 .

Промежуточные шестерни L и M устанавливаются на шлицевой втулке 10 оси 13 , закрепляемой при помощи ключа в требуемом месте паза кронштейна 3 , который фиксируется гайкой 6 .
13.8.2. На торцах сменных шестерен K, L, M, N нанесены условные обозначения деталей (см. упаковочный лист), число зубьев z и модуль m.
13.8.3. При закреплении кронштейна 3 и оси 13 нужно установить сменные шестерни с минимальным радиальным зазором.

Нельзя забывать о регулярной смазке (см. म. 6.2. «Карта смазки») сменных шестерен и втулки 10 , которая смазывается через колпачковую масленку 12 .

13.9. Станина, рейки, ходовой винт, ходовой вал и привод быстрых перемещений суппорта

(рис. 36)
13.9.1. Натяжение ремня привода быстрых перемещений суппорта осуществляется регулировочным винтом 3, который контрится гайкой 2.
13.9.2. При чистке ходового винта 13 и ходовопо вала 14 необходимо снять щитки 9 и 10. Для этого нужно отпустить винты 19 и вынуть щитки со стороны заднего кронштейна 18.
13.9.3. Еще раз обращаем внимание на необходимость указания наибольшей длины обрабатываемого изделия L, при заказе запасных частей. Для заказа реек следует руководствоваться таблицей:

L	710	1000		1400	2000
№ рейки	8	8	11	8	8
Количество	1	1	1	2	3

13.9.4. Установка и онятие мостика (рис. 37). Станок 16 K 20 Г нюставляется с установленным на станине мостиком 3. При необходимости обработки

деталей большого диаметра над выемкой в станине мостик снимается. Для этого нужно вывернуть пробки 1 , удалить винты 2 и штифты 4.

Во избежание нанесения забоин мостик положить на подкладку нз мягкого материала и для предотвращения коррозии покрыть тонким слоем масла.

Перед установкой мостика на станину следует очень тщательно протереть посадочные псверхности станины и мостика и убедиться в отсутствии забоин.
13.9.5. Следует знать, что при обработке деталей над выемкой на планшайбе диаметром 500 мм ($1911 / 16^{\prime \prime}$) число оборотов шпинделя не должно превышать 400 об/мин. При обработке несбалансированных изделий число оборотов должно быть снижено.

13.10. Держатель центрового инструмента

(рис. 38)
13.10.1. В руководстве под определением «центровой инструмент» понимается режущий инструмент для обработки отверстий, ось которых совпадает с осью шпинделя (например, сверла, зенкеры, развертки и т. п.).
13.10.2. Держатель центрового инструмента применяется прн обработке отверстий с ручной и механической подачей каретки.

Держатель I устанавливают в позицию резцедержателя, маркированную символом, обозначаощим сверло, до упора в его боковую грань и зажимают винтамн.

В цилиндрическое отверстие держателя встав ляется втулка 2 с коническим отверстием для инструмента и стопорится винтом 3 .
13.10.3. Совмещение оси режущего инструмента с осью шпинделя осуществляется перемещением поперечных салазок суппорта до совпадения визира с риской на каретке, обозначенной символом, идентичным нанесенному на резцедержателе. Причем визир должен быть вдвинут вв кронштейн до упора.

Коррекция положення оси режущего инструмента пронзводится рукояткой перемещения поперечных салазок.

13.1I. Резцовая оправка для обработки деталей над выемкой

в станине

(рис. 39)
13.11.1. Станок $16 \mathrm{~K} 20 \Gamma$ комплектуется специальной резцовой оправкой для обработки деталей на, выемкой в станине, предотвращающей свисанне каретки с направляющих станины.
13.11.2. Оправка I устанавливается в держателе 2 , как это показано на рис. 39. Резец 4 крелит ся винтами 5.
13.11.3. Обработка с использованием оправки должна іпрозводиться на минимальных режимах.

14. КИНЕМАТИЧЕСКАЯ СХЕМА

(Рис. 40)
14.1. Кинематическая схема эриведена щля нонимания связей и взаимодействня основных элементов станка. На выносках проставлены числа зубьев (z) шестерен (звездочкой обозначено число заходов червяка).

Цифрой I обозначен супиорт с механическим перемещеннем резцовых салазок (п. 13.5.7.).

15. СХЕМА РАСПОЛОЖЕНИЯ ПОДШИПНИКОВ

(Рис. 41)
15.1. Заказывать подшипники следует в соответствии с данными, приведснными в перечне подшипнико'в качения (пп. 15.2)

Рис. 37. Чертеж установки мостнка на ста!ni!y

Рис. 38. Держатель для центрового инсірумента

Рис. 39. Рсзцовая оправка для обработки деталей над выемкой в станине

Рис. 36. Станина, рейки, ходовой винт, ходовой вал и привод быстрых перемещений

Ріс. 40. Кинематическая схема

Шарикоподшнпники радиальные однорядные с одиой защитной шайбон̆

Шарикоподшипники радиально-упорные однорядные

16. ХАРАКТЕРНЫЕ ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ

16.1. В станках мотут быть различного рода неисправности. Мпогие из них возникают из-за несоблюдения ннструкций по уходу н обслуживанию.

В любом случае, прежде чем приступить к устранению неисправности, нужно ознакомиться с перечнем основных возможностей ненсправностей (см. п. 16.2), а также с соответствующим пунктом раздела 13.

При идентичпости характера івозникшей неисправности с онисаниой нужно воспользоваться предлагаемыми методами устранения.

В случае, если характер неисправности не совпадает с перечисленными и ее устранение вызывает затруднения, обращайтесь на наш завод.

16.2. Перечень основных возможных неисправностей

Характер ненсправности	Причины возникновення	Методы устранения
Станок me sanyc-кается	$\begin{array}{ll} \text { Срабатывают } & \text { блокн- } \\ \text { ровочные } & \text { устрой- } \\ \text { ства } & \end{array}$	Проверить падежность закрытия двери іккафа, кожуха корооки передач
	Падепие или отсутствие наиряжения питающей сети	Проверить нали чие и величину папряжения в сети

17. PEMOHT

17.1. В разделе даны рекомендации по восстановлению работоспособности станка, составленные в соответствии с принятой в СССР «Единой системой планово-предупредительного ремонта и рациональной эксллуатации технологическоло оборудования машиностроителыных предприятий» (издательство «Машиностроение» 1967 г.).

капитальнопо ремонта) равен 10 годам при двухсменной работе.

За период межремонтного цикла станок должен быть подвергнут шести осмотрам, четырем малым ремонтам и одному среднему в сроки, указанные в рекомендуемом графике плановых ремонтных работ (рис. 42).

Рвс. 42. Рекощендуемый графнк плановнх ремонтных работ
17.2. При эксплуатации станка в соответствии с требованиями и рекомендациями, изложенными в предшествующих разделах, и соблюдении профилактических мероприятий настоящего раздела его межремонтный цикл (срок работы до первого

Следует учитывать, что наибольшую эффективность использования станка может обеспечить рациональное чередование и периодичность осмотров и плановых ремонтов, выполняемых с учетом конкретных для каждого отдельного станка условий эксплуатации.
17.3. Типовые ремонтные работы, выполняемяв при плановых ремонтах.

17.3.1. Осмотр

Наружный осмотр без разборки дляя выявляеняя дефектов станка в целом и но узлам.

Проверка прочности и плотности непоцвижных жестких соединений (основания с фундаментом; станины с основанием; шпиндельной бабки, коробки подач со станиной; каретки с фартуком; шкивов с валами и т. іт.).

Открывание крышек узлов для осмотра и ироверка состояния механизмов.

Выборка люфта в ввнтовой паре привода поперечных салазок.

Проверка правильности переключения рукоиток скоростей шпинделяs и подач.

Регулирование фрикционнй муфты Іларионо привода : лентоного тормоза шпинденя.

Подтягиванне прнжимных планок жаретюи и клиньев полеречных я резцовых салазок.

Очистка соирыгаемых иоверхиосгей резиедержателя, зачистка забони и царани!.

Проверка состояния направляющих станнны и каретки, зачистка забоин, царапин, задиров.

Oинста п! промывка протекторов ::а нарете, салазках супюртӓ и задней баббе.
 шениых крепежных деталей -- шпилек, винтов, гаек, а также пружия

Чистка, натяжение, ремоні или замола ромие! главного ириводд, иривода оыстры: переменонии

Проверка состояния и велкнй ремиіт системы охлаждения.

Проверка состояния и мелкий ремонт системы смазки.

Проверка состояния, очистка и мелкий ремон? ограждающих кожухов, щитков !1 т. п.

Выявленае изношенных деталей, требуюших восстановления или замены при ближайшем ллановом ремонте.

17.3.2. Осмотр перед капитальным ремонтом

Работы, выполияемые при осмотрах перед другими видами ремонтов и, кроме того, выявление деталей, требующих восстановления или замены, эскизирование нли заказ чертежей изношенных деталей из узлов, подвергающихся разборке.

Примечание.. При проведенин осмотром выполняются те иэ перечисленных работ. необходимость в которых обуслонлепа состояинем стаика.

17.3.3. Малый ремонт

 ненных узлоя. Открынаиня кры山ек и снятие кожу. хов для вннтреннего осмотра п промывки остальных узлов.

Зачистка посадочіых поверхностей под ириспо. собления на шпинделе и пнноли задней бабки бея демонтажа последних.

Гроверка зазоров между валами и втулками, замена изношенных втулок, регулирование подшипников качения (кроме шниндельных), замена изно. шенных.

Регулирование фрикционной муфты главнот. привода, добавление дискөв: ретулірование ленточ ного тормоза шпинделя.

Зачистка заусенцев на зубьях шестерен и шллицах.

Замена или восстаюовление пиюшеных крепеж. ных и ретулировонних деталей резиецержтелей.

Пришабривание ил! зачитта регулиривоных клинеев, прижимиых планок и т. п.

Зачиста ходивоно винта, suдового вала, винтов

Зачиста : промынка посаиоиних поверхностей резцовой головки.

Проверка работи и регулирование рынагов : рукояток орианон умравлепия, блокируюних,
 ограничителей; замена нзношенних сумареи, итнф.
 низмов.

 mianoboro peworta.
 на трущихся новв, сноетях нинравляощих станнны, каретки, салазаах суинорта и задней бабкі.

Ремонт ограждающни кожухов, циткж, экрапов и т. п.

Ремонт и промывка "нитены смазки и пиквиднравание утечек.

Регулироваии !наиности иеремещения каретки,
 ных планон.

11 роверка состояния: " зачистка зубчатых муфт.
Проверка и ремонт систем пневмюоборудования п охлажденая; ликвидирование утечек.

Выявление деталей, требующих замепь : али восстаиовления ири ближайшем плановом ремонте.

Проверка точности установки станка и выбороч но другнх точностных параметров.

Псиытание сганка на холостом ходу на всех скоростях и поданах, проверка на шум, натрев п по. обрабатываемой детали на тониость и тистоту обработкн.

Примечание. При малом рсмонте выполняются те нз ука. заних работ, которые нызыиактся состоянием ремоитируемого станка, за нсключением работ, предусмотремных в трет послециих пунктах, которые должыы выполняться во всех слу чаях.

17.3.4. Средний ремонт

Проверка на точность перед разборкой.
Измерение износа трущихся поверхностей перед ремонтом базовых деталей.

Частичная разборка станка.
Промывка, протирка деталей разобранных узлов; промывка, очистка от грязи неразобранных узлов.

Контроль жесткости шпиндельного узла (см. n. 13.1.5.)

Замена или восстановление изношенных втулок и подшипников качения.

Замена или добавление фрикционных дисков и замена ленты тормоза шпинделя.

Замена изношенных зубчатых колес и муфт.
Восстановление или замена изношенных винтовых пар привода салазок суппорта и пиноли заднеш் бабкн.

Замена изношенных крепежных деталей.
Замена или восстановление и тригонка регулироночных клиньев и прижимных планок.

Восстановление точности ходового винта (путем прорезки).

Проверка и зачистка неизношеняых деталей, दоставляемых в механизмах станка.

Ремонт насоса подачи охлаждающей жидкости и арматуры.

При износе шарнирного механизма светильника НКС $01 \times 100 /$ ПОО-03 основание опвернуть, повернуть против часовой стрелки на 90° и снова закрепить.

Ремонт насоса системы смазки, аппаратуры т арматуры; ремонт или замена маслоуказателей, прокладок, пробок і других элементов системы смазки.

Исправление шлифованием или шабрением нуждающихся в ремонте направляющих поверхностей, если их износ превышает допустимый.

Ремонт или замена протекторов на каретке, салазках суппорта, задней бабке.

Ремонт или замена ограждающих щитков, кожухов, экранов и т. п.

Сборка отремонтированных узлов, проверка правильности взаимодействия узлов и всех механизмов станка.

Окрашивание наружных :нерабочих поверхностей с подшпаклевкой.

Обкапка станка на холпстом ходу на всех скоростях и подачах.

Проверка на шум и нагрев.
Проверка станка на соответствие нормам точности.

17.3.5. Капитальный ремонт.

Проверка станка на точность перед разборкой.
Измерение износа трущихся поверхностей перед ремонтом базовых деталей.

Полная разборка станка н всех его узлов.
Промывка, протирка всех деталей.
Осмотр всех деталей.
Уточнение предварительно составленной (при осмотрах и ремонтах) ведомости дефектных деталей, требующих восстановления или замены.

Восстановление или замена изношенных деталей.

Ремонт системы охлаждения.
Смена насоса системы смазки н ее ремонт.
Шлифование или шабрение направляющих поверхностей станины, каретки, салазок суппорта, задней бабки.

Замена протекторов на каретке, салазках суппорта, задней бабке.

Сборка всех узлов станка, проверка правильности взаимодействия узлов и механизмов.

Шпаклевка и окраска всех необработанных поверхностей в соответствии с требованиями по отдєлке нового оборудования.

Обкатка станка на холостом ходу на всех скоростях и подачах.

Проверка на шгум и нагрев.
Проверка состояния фундамента, исправление его и установка стачка в соответствии с разделом 4 настоящего руководства.

17.4. ДОПОПНИТЕЛЬНЫЕ ТРЕБОВАНИЯ ПРЕДВЯВЛЯЕМЫЕ К ЭКСПЛУАТАЦИИ ТЕХНИЧЕСКОМУ УХОДУ И РЕМОНТУ СТАНКА

17.4.1. Поддержание станка в работоспособном состоянии обеспечивается своевременно проводимыми профилактическими мероприятиями и высококачественным ежедневным обслуживанием.

Станок 16 K 20 П следует периодически подвергать проверкам на соответствие нормам точности.
17.4.2. Нужно избегать лишней разборки станка, в особенности узлов, определяющих выходную точность (шпиндельной группы, винторезной цепи).
17.4.3. Демонтированные при ремонте узлы и ответственные детали должны храниться на спещиальных мягких подкладках.
17.4.4. Ремонт должны выполнять специально подготовлеиные слесари высокой квалификапии.
17.4.5. Применяемые измерительные инструменты и приборы должны быть проверены в изме. рительной лаборатории и аттестованы.

18. УКАЗАНИЯ О ПРОВЕДЕНИИ КОНТРОЛЯ ТОЧНОСТИ

В этом разделе приведены три арбитражные бегнуть при снижении точности обрабатываемц проверки точности станков, к которым следует придеталей.

 прнмер, в отверстии, и пронзводят обработку торцовой поверхностн.

Проверку плоскостности обработанной поверхностн производят одинм нз следующих методов.

2.2.1. Проверха при помощи индикатора на станке.

Проверку производят, не снимая образец со станка.
Индикатор укрепляют на суппорте так, чтобы его нзмерительный накоиечник касался проверяемой поверхности н был ей перпендикулярен.

Верхнюю часть суппорта перемещают в поперечном иаправлении на длину, равную нлн несколько больше D_{1}.
Отклоненне определяют как половину нанбольшей алгебраической разности показаний иидикатора.

2.2.2. Проверка прп помощи коитрольной линейки

 и мндикатора (нлп концевых мер длины, плиток пли щупа).На проверяемой поверхности устанавлнвают линейку поочередно в осевых и других различных сеченнях. Индикатор устанавливают рядом к касаются нзмерительным наконечником линейки.

Отклонение определяют как наибольшую алгебраическую разность показаний нндакатора при его перемещенни. Допускается проверка с помощью щупа.

Образед - Валик с резьбой;
d - примерно равен диаметру ходового вннта станка; $L \geqslant D$, но не более $1000 \mathrm{~mm} ; L_{1}=D_{1}$, но не более 500 mm .

Образец предварительно обработан.
Образец закрепляют в центрах станка, после чего нарезают трапецендальную резьбу $d \times L_{1} \times t, t$-шаг резьбы, прнмерно равен шагу ходового винта станка.

При этом ходовой винт непосредственно соединяют со шпинделем через сменные зубчатые колеса с отключением механизма коробкн подач. После чнстовой обработкн проверяют равномерность резьбы с помощью соответствующнх приборов в методов проверки.

По результатам измерений определяют накопленную погрешность шага резьбы - разность между фактическнм и заданным расстоянием между любыми однонменными не соседними профнлями внтка резьбы в осевом сеченни по линни, параллельнов осн винта.

Допууек, зеск по ГОСТ 18097-72

$16 K 20$	16 K 25	16 K 20 n
16 K 205		

	$\begin{gathered} 16 \\ \text { на длнне } \\ 60 \mathrm{~mm} \end{gathered}$
$\begin{gathered} 30 \\ \text { на алине } \\ 100 \text { миж } \end{gathered}$	$\left\|\begin{array}{c} 25 \\ \text { на } 25 \text { длине } \\ 100 \text { мл } \end{array}\right\|$

19. ПАСПОРТ

19.1. Общие сведения

```
Инвентарный номер
Модель
Наибольшая длина обрабатываемого изделия \(L\)
Предприятие
```

Дата пуска станка в эксплуатацию

19.2. Основные технические данные и характеристики

Таблида 1
Основные параметры

Нашбольшая длина обрабатываемого изделия L
-высота оси центров над плоскими направляющими станины

Рис. 44. Эскиз шпинделя

Рис. 45. Эскиз суппорта
19.3. Сведения о ремонте

Нанменование и обозначение составных частея станкв	Основание для сдачи в ремонт	Дата		Кагегория сложностн ремоита	Ремонтны цнкл работы станка. «ас	Вяд ремонта	Должность, фамнлня п подлись ответственного лица	
		поступлення в ремонт	рыхода нз pemahta				пронзведиего ремонт	принявиего ремонт

19.4. Сведения

в станке

Наименование и обозначенне cocrasных частей сrанка	Основание (нанменванне документа)	Дата проведенньх изменений	Характеристнка работы станка носле проведения нзмеиении	Должность, фамнлия и под пись ответственного лица
				.

19.5. Комплект поставки

19.5.1. Станок поставляется в собранном виде с установленными на нем основными принадлежностями и приспособлениями. Дополнительные принадлежности и приспособления, как было сказано в разделе 2 , упакованы в отдельные ящики с приложенными упаковочными листами, ио которым ириверяется комплектность поставки.
19.5.2. В основной комплект поставки входят принадлежности и приспособления, стоимость которых включена в цену станка:

Станок в сборе*. (1 комплект).
Сменные шестерни (1 комплект):
Для станков $16 \mathrm{~K} 20 ; 16 \mathrm{~K} 20$ П; 16 K 20 Г: $z=86 ; z=73 ; z=64 ; z=60 ; z=40 ; z=36 ; z=44$; $z=48 ; z=57$.

Для станков 16K25: $z=90 ; z=80 ; z=50 ; z=45 ; z=48 ; z=57 ; z=86$; $z=73 ; z=60 ; z=72 ; z=66$.

Инструмент для обслуживания станка (1 комплект).

Ремни клиновые :о ГОСТ 1284--68:
Рлавного привода Б $2240 \mathrm{~T}-1$ - 5 шт. .
гривода насоса смазки 0800T-1-1 шт.
привода быстрых ходов A710T-1-1 шт.
Упор микрометрический жесткий продольного хода (1 комплект).

Патрон поводковый (1 комплект).
Патрон трехкулачковый самоцентрирующий а ключом и фланцем $\varnothing 250$ мм ($\left.9^{27 /} / 2^{\prime \prime}\right)$ или бєз фланца (1 комплект).

Планшайба Ф500-1 шт. (Только для станка 16 K 20) .

Оправка (1 комплект) (Только для станка 16 K 20 F).

Люнет подвижный для изделий диаметром or $20 \mu м\left({ }^{25} / \mathrm{s}^{\prime \prime}\right)$ до 80 мм ($3^{5} / \mathbf{s 2}{ }^{\prime \prime}$) к станкам 16 K 20 , $16 \mathrm{~K} 20 \Pi, 16 \mathrm{~K} 20 \Gamma-1$ шт.

Люннет неподвижный для изделий диаметром от 20 мм ($25 / 32^{\prime \prime}$) до 130 мм ($51 / 8^{\prime \prime}$) к станкам 16 K 20 , 16К20П, 16К20Г-1 шт.

Люнет подвижный для изделий диаметром от 20 мм ($25 / 8{ }^{2 \prime}$) до 100 мм ($315 / 16^{\prime \prime}$) к станку 16К $25-$ 1 шт.

Люнет неподвижный для изделий диаметром от

Центры упорные по ГОСТ 13214-67;
для шпинделя - 1 шт.;
для пиноли вадней бабки - 1 шт.
Центры вращающиеся по ГОСТ $8742-62-1$ шт.
Комплект запасных частей электрооборудования для экспортных поставок

Техническая документация:
Упаковочные листы (1 комплект).
Руководство по зксплуатации (1 экз.).
19.5.3. В комплект поставки также могут входить принадлежности и приспособления, поставляемые за дополнительную плату:

[^1]
Исполнение

Шкивы пювышенного ряда скоростей шпииде $16 \div 2000$ об/мин (для станков 16 K 20 и 16 К 20 П).

Шкивы пониженного ряда скоростей шпинде $10 \div 1250$ об/мин (для станка 16 K 20 Г).

Шкивы нониженного ряда скоросгей шпинде $10 \div 1250$ об/мин (для станка 16 K 25).

Электрооборудование для пониженной мощност главного привода 7,5 квт.

Примечание. Прн поставке этих нсполненй основно: исполнепие не поставляется.

Принадлежности
Державка для центрового инструмента (1 комй лект).

Люнет втулочный для парезания резьбы на вин тах (1 комплект).

Патрои четырехкулачковый с ключ̆ом (1 комп лект).
19.5.4. По особому заказу за отдельную плат могут быть поставлены:

Исполнение
Резцовые салазки с механическим перемемениеи (только для станка 16K20) - 1 комплект.

Смениые шестерии (1 комплект).
Для нарезания резьб, не указанных в таблице (рис. 10):

Для станков 16К20, 16К20Г и 16 K 20 П $z=66$ $z=54 ; z=52 ; z=46$.

Для станка 16К25 $z=88 ; z=81 ; z=65 ; z=$, 9 $z=64 ; z=40 ; z=72 ; z=54$.

Для нарезання резьб «ңапрямую» для станкси 16 K 20 I ํ $16 \mathrm{~K} 20: \quad z=60 ; z=72 ; \quad z-54, z=45$ $z=80 ; z=80^{*} ; z=127^{*} ;{ }^{*} m=1,5$.

Принадлежности

Гидроколировальный узел переднего расюопоже ния, гидрокопировальный узел заднего распоноже ния (для станков 16 K 20 и 16 K 20 П).

Линейка конусчая (1 комплект).
Резцедержатель задний (1 комплект).
Упор микрометрический жесткий поперечного хода (1 комплект).

Ходовой винт каленый - 1 шт. (для станков с L 710 м м и 1000 mm).

Втулка переходная для упорноио центра - 1 шт. 6101-0134 ГОСТ 18258-72.

Центр унорный по ГОСТ 13214-67-1 Шт.
Патрон сверлильный - 1 шт.
Втулки короткие переходные -- 1 комплект по ГОСТ 13598-68.

Клинья к инструменту с коническим хвостовч ком - 1 комплект.

Резьбоуказатель для станков с метрическим ходовым винтом (1 комплемг).

Лимб поперечной подачи с метрическим и дюймовым делительными кольцами (только для станков, поставляемых на экспорт) 1 комплект.

Лимб продольной подачи с метрическим и дюймовым делительными кольцами (только для станков, ноставляемых на экопорн) - 1 комплект.

Специфнкация и чертежи запасных деталей (1 комплект).

[^0]: Принечание. Даиные в таблице приведены для стаиков с пределами цисла оборотов шианделя в мииту $12,5-1600$ и мощностью электродвнгателя главного привода 10 квт (13,4 англ. л. с). Длл етанков, изго товляемых по заказу, эти данные долж. ны быть соответственно пересчитаны.

[^1]: - Станок, 16 K 20 п комплектуется резцовыми салазками с механкческим перемещинием.

